Новый метод визуализации отдельных нейронов дает хорошие результаты.
http://medicalxpress.com/news/2014-12-cell-technique-brain.html

RGB marking of HEK-293T cells, transduced with (A) VSVG pseudotyped SFFV-promoter containing lentiviral vectors (VSVG-SFFV-LV), (B) VSVG pseudotyped CMV-promoter containing lentiviral vectors (VSVG-CMV-LV), or (C) VSVG pseudotyped SFFV-promoter containing γ-retroviral vectors (VSVG-SFFV-RV). Cells in (A) are shown 6 days after plating, cells in (B–C) are shown 5 days after plating, indicating the correlation between cell growth and size of homogenously coloured cell clusters. (A–C) Fluorescence is shown in red (mCherry), green (Venus) and blue (Cerulean).
All images were taken from live cells in an Olympus IX81 inverted microscope by stitching images taken with a colour camera and a 10x objective. Scale bar: A–C, 250 µm (in A).


Исследователи из университета Саусхэмтона использовали новый метод RGB-трэкинга отдельных нейронов при помощи вирусных векторов, каждый из которых дает "метку" из флуоресцентного белка одного из трёх RGB-цветов.
Каждая отдельная клетка получает свою уникальную смесь этих трёх флуресцентных белков, позволяющую отличать одну клетку от другой.
С момента внедрения вирусного вектора в стволовую клетку мозга, она продолжает экспрессировать этот белок постоянно, как и все её дочерние клетки, что позволяет отслеживать нейрональный прогенез, клеточную миграцию и интеграцию в развивающемся взрослом мозге с высокой точностью локализуя отдельные клетки в процессе наблюдения.
Д-р Диего Гомез-Николя считает, что метод RGB-трекинга очень поспособствует развитию генной медицины, модифицирует сам метод нейропредставления среди исследователей по всему миру и учёные получат возможность управлять экспрессией выделенных генов в отдельных клетках мозга.
Отчёт опубликован в журнале Scientific Reports
http://www.nature.com/srep/2014/141222/srep07520/full/srep07520.html
оригинал
Scientists from the University of Southampton have developed a new technique to mark individual brain cells to help improve our understanding of how the brain works.
In neuroscience research, it is a challenge to individually label cells and to track them over space or time. Our brain has billions of cells and to be able to distinguish them at the single-cell level, and to modify their activity, is crucial to understand such a complex organ.
The new marking technique, known as multicolour RGB tracking, allows single cells to be encoded with a heritable colour mark generated by a random combination of the three basic colours (red, green and blue).
Brains are injected with a solution containing three viral vectors, each producing one fluorescent protein in each of the three colours. Each individual cell will take on a combination of the three colours to acquire a characteristic watermark. This approach allows researchers to colour code cells that would otherwise not be visible and undistinguishable from each other.
Once the cell has been marked, the mark integrates into the DNA and will be expressed forever in that cell, as well as in any daughter cells.
Dr Diego Gomez-Nicola, a Career Track Lecturer and MRC NIRG Fellow in the Centre for Biological Sciences at the University of Southampton, who led the multicolour RGB tracking research, says: "With this technique, we have proved the effective spatial and temporal tracking of neural cells, as well as the analysis of cell progeny. This innovative approach is primarily focused to improve neuroscience research, from allowing analysis of clonality to the completion of effective live imaging at the single-cell level."
"We predict that the use of multicolour RGB tracking will have an impact on how neuroscientists around the world design their experiments. It will allow them to answer questions they were unable to tackle before and contribute to the progress of understanding how our brain works."
For the researchers, the next step is to change the physiology or identity of certain cells by driving multiple genetic modification of genes of interest with the RGB vectors. In the same way they made cells express fluorescent proteins, researchers hope they can change the cell expression of target genes, which would underpin gene therapy-based therapeutic approaches.
The research is published in the journal Scientific Reports.

RGB marking of HEK-293T cells, transduced with (A) VSVG pseudotyped SFFV-promoter containing lentiviral vectors (VSVG-SFFV-LV), (B) VSVG pseudotyped CMV-promoter containing lentiviral vectors (VSVG-CMV-LV), or (C) VSVG pseudotyped SFFV-promoter containing γ-retroviral vectors (VSVG-SFFV-RV). Cells in (A) are shown 6 days after plating, cells in (B–C) are shown 5 days after plating, indicating the correlation between cell growth and size of homogenously coloured cell clusters. (A–C) Fluorescence is shown in red (mCherry), green (Venus) and blue (Cerulean).
All images were taken from live cells in an Olympus IX81 inverted microscope by stitching images taken with a colour camera and a 10x objective. Scale bar: A–C, 250 µm (in A).


Исследователи из университета Саусхэмтона использовали новый метод RGB-трэкинга отдельных нейронов при помощи вирусных векторов, каждый из которых дает "метку" из флуоресцентного белка одного из трёх RGB-цветов.
Каждая отдельная клетка получает свою уникальную смесь этих трёх флуресцентных белков, позволяющую отличать одну клетку от другой.
С момента внедрения вирусного вектора в стволовую клетку мозга, она продолжает экспрессировать этот белок постоянно, как и все её дочерние клетки, что позволяет отслеживать нейрональный прогенез, клеточную миграцию и интеграцию в развивающемся взрослом мозге с высокой точностью локализуя отдельные клетки в процессе наблюдения.
Д-р Диего Гомез-Николя считает, что метод RGB-трекинга очень поспособствует развитию генной медицины, модифицирует сам метод нейропредставления среди исследователей по всему миру и учёные получат возможность управлять экспрессией выделенных генов в отдельных клетках мозга.
Отчёт опубликован в журнале Scientific Reports
http://www.nature.com/srep/2014/141222/srep07520/full/srep07520.html
оригинал
Scientists from the University of Southampton have developed a new technique to mark individual brain cells to help improve our understanding of how the brain works.
In neuroscience research, it is a challenge to individually label cells and to track them over space or time. Our brain has billions of cells and to be able to distinguish them at the single-cell level, and to modify their activity, is crucial to understand such a complex organ.
The new marking technique, known as multicolour RGB tracking, allows single cells to be encoded with a heritable colour mark generated by a random combination of the three basic colours (red, green and blue).
Brains are injected with a solution containing three viral vectors, each producing one fluorescent protein in each of the three colours. Each individual cell will take on a combination of the three colours to acquire a characteristic watermark. This approach allows researchers to colour code cells that would otherwise not be visible and undistinguishable from each other.
Once the cell has been marked, the mark integrates into the DNA and will be expressed forever in that cell, as well as in any daughter cells.
Dr Diego Gomez-Nicola, a Career Track Lecturer and MRC NIRG Fellow in the Centre for Biological Sciences at the University of Southampton, who led the multicolour RGB tracking research, says: "With this technique, we have proved the effective spatial and temporal tracking of neural cells, as well as the analysis of cell progeny. This innovative approach is primarily focused to improve neuroscience research, from allowing analysis of clonality to the completion of effective live imaging at the single-cell level."
"We predict that the use of multicolour RGB tracking will have an impact on how neuroscientists around the world design their experiments. It will allow them to answer questions they were unable to tackle before and contribute to the progress of understanding how our brain works."
For the researchers, the next step is to change the physiology or identity of certain cells by driving multiple genetic modification of genes of interest with the RGB vectors. In the same way they made cells express fluorescent proteins, researchers hope they can change the cell expression of target genes, which would underpin gene therapy-based therapeutic approaches.
The research is published in the journal Scientific Reports.